skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "de Anda Acosta, Yazmin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Many insects harbor heritable microbes that influence host phenotypes. Symbiont strains establish at different densities within hosts. This variation is important evolutionarily because within-host density has been linked to the costs and benefits of the symbiosis for both partners. Studying the factors shaping within-host density is important to our broader understanding of host–microbe coevolution. Here we focused on different strains of Regiella insecticola, a facultative symbiont of aphids. We first showed that strains of Regiella establish in pea aphids at drastically different densities. We then found that variation in density is correlated with the expression levels of two key insect immune system genes (phenoloxidase and hemocytin), with the suppression of immune gene expression correlating with higher Regiella density. We then performed an experiment where we established coinfections of a higher- and a lower-density Regiella strain, and we showed that the higher-density strain is better able to persist in coinfections than the lower-density strain. Together, our results point to a potential mechanism that contributes to strain-level variation in symbiont density in this system, and our data suggest that symbiont fitness may be increased by establishing at higher density within hosts. Our work highlights the importance of within-host dynamics shaping symbiont evolution. 
    more » « less